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Abstract
The dynamic-mechanical response of a polymer network has been calculated
using a stress-based Rouse model formalism. In contrast to the previous
work, this improved formulation incorporates appropriate boundary conditions
and provides a smooth crossover from the classical equilibrium result of
rubber elasticity to the short time-scale relaxation. We develop a consistent
implementation of the classical tube model, which is merged with the Rouse
dynamics to take into account the entanglement effects. In a polymer network,
crosslinks prevent the global reptation and constraint release. Entanglements
thus acquire a different topological meaning and have a much stronger effect
on the resulting mechanical response. We construct a dynamic stress tensor for
a polymer network, which naturally covers the whole frequency/time range.
Using this stress tensor, we first examine the equilibrium response to small shear
and uniaxial deformations, and then investigate the linear dynamic response of
a network for all the cases where the stress–tensor computations are analytically
tractable.

PACS numbers: 61.41.+e, 83.80.Va, 83.80.Wx

1. Introduction

Understanding the molecular mechanisms of equilibrium and dynamic-mechanical response
of polymer networks is counted amongst the most important unsolved problems in polymer
physics. This is not surprising since polymer networks are highly complex disordered systems.
An example of a macroscopic network polymer is rubber: it has a three-dimensional structure
in which each chain is connected to all others by a sequence of junction points, called
crosslinks. The resulting constraints, together with the conformational entropy arising from
the chain flexibility, are responsible for rubber elasticity. This is the most basic view of a
material that is expected to contain network inhomogeneities and other defects, e.g. trapped
entanglements, which will alter its elastic behaviour as well.
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The simplest theoretical models consider the network as being made of phantom or ideal
chains. Each polymer is modelled by a three-dimensional random walk in space: chains may
freely intersect and the network strand conformations are assumed to be independent of one
another. To form a corresponding phantom network, the chains are linked to each other at
their end points, but do not interact otherwise. In particular, they are able to fluctuate freely
between crosslinks. In a real network, the exact location of the crosslinks can vary from one
specimen to the next. However, any two samples having different crosslink realizations will
exhibit similar macroscopic properties. The phantom model, although crude, is the customary
first approach when solving polymer theory problems.

Attempting to improve the phantom model, one is faced with the complexity of
entanglements and their topological constraints. Modern understanding of network or rubber
elasticity has come a long way since the first molecular models were developed in the 1930s
[1]. Recent classic equilibrium theories are sophisticated and try to incorporate topological
constraints from crosslinks and entanglements, excluded volume effects and network features
such as dangling ends, inhomogeneities and noninteracting strands [2–5], and even thermal
elastic fluctuations [6]. Although generally successful and certainly valid conceptually,
existing theories do not provide a fully adequate understanding of rubber elasticity. Predicted
stress–strain relationships and elastic moduli under various non-trivial types of deformation
still show discrepancies with experiment. However, it is general dynamic response theories
for polymer networks that are deficient and markedly less successful than the plethora of
equilibrium (long time limit) models that currently exist. Although there is a large body
of seminal literature covering the area of dynamics of uncrosslinked polymer chains (melts
and solutions) [7–10], corresponding investigations into the dynamics and relaxation of fully
percolating random networks are still lacking.

The dynamic response of networks is an important research area and plays a role in areas
as diverse as vibration damping and the toughening of biological tissues [11]. Fundamental
polymer theory research provides a backbone for investigating and predicting properties of
these systems. An extension of the tube-model theory for rubbers, first proposed by Edwards
[12], was based on the reptation theory [13, 14]. Few theories go beyond the phenomenological
level to try and link macroscopic properties of the system with a molecular structure. One of the
first attempts to derive a statistical dynamics of networks by employing a viscosity coefficient,
as in the Rouse model, never managed to explain the full set of dynamic properties [16]. A
tube model approach [17] has been used to analyse the relaxation of flexible network strands
between crosslink points and to obtain the linear complex modulus of a highly entangled
rubbery network, though it was limited to the small frequency range only.

More recently a stress–tensor formulation [18], based on the Rouse mode expansion, was
used to look at the linear dynamic response over the whole frequency range. The motivation
behind the work was to find an analytical method for investigating polymer network dynamics
and laying a foundation for future investigations. The stress–tensor approach naturally allowed
an analytical description of the relaxation of an affinely deformed ideal network over the whole
time range. Although such an entropic theory alone was not wholly satisfactory (for example,
to examine glassy dynamics in a short time limit), it remained a self-consistent and interesting
model to start with. Although quite successful for a phantom model, it was clear that the
stress–tensor model [18] could still be improved in many ways. First, it did not incorporate
appropriate boundary conditions for the crosslinks, which led to unfamiliar rubber elasticity
behaviour in the long time limit when the classic behaviour was expected. In section 2 we
review the improved phantom model [19], which employs more robust boundary conditions.
Second, it is necessary to incorporate the required level of complexity by accounting for
entanglement constraints. In section 3, by expanding on the phantom stress–tensor approach
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and employing ideas from an existing tube model for rubber elasticity [20, 21], we construct
a Rouse-tube model of rubber viscoelasticity. The merit of the present constrained dynamic
Rouse model lies in that it is the first model to naturally cover the equilibrium and dynamic-
relaxation ranges of an entangled network response. In section 3.3, we calculate the stress
tensor for small shear and uniaxial deformations in the long time limit. Lastly, in section 3.4,
we investigate different regimes of tube and segment relaxations, and obtain the associated
shear moduli. In this way, we highlight the tractable areas within the tube model approach
and separate it from more challenging areas for future research.

2. Constrained phantom network model

Before considering entangled rubber, we shall review the results of the earlier phantom chain
network theory, which provides the basic building blocks for all future network stress–tensor
approaches.

2.1. Constrained Rouse dynamics

The dynamics of a single ideal chain is traditionally described by the Rouse model of beads,
each connected to its nearest neighbour with Gaussian springs. In a solution, ideal Rouse
chains obey the following stochastic partial distribution equation for the position of a chain
segment rn(t):

ζ ṙn = −κ(2rn − rn+1 − rn−1) + fn −→ ζ
drn

dt
= κ

∂2rn

∂n2
+ fn, (1)

where κ ≡ 3kBT/�2 is the spring constant, ζ is the viscous drag coefficient on each segment
and fn is the (thermal) white noise due to random collisions with the environment. The
dynamics of the whole chain can be described by a set of normal modes. For a free chain, the
elastic forces vanish at the ends and leads to the classical Rouse formalism as described in e.g.
[7]. However, in a network the chain ends are crosslinked and thus constrained to a certain
extent. If we consider them to be completely fixed, such that a force can propagate from each
end, the symmetric boundary conditions are

rn=0 = 0 and rn=N = R. (2)

It is important to emphasize the need for the force on the end segments, κ∂rn/∂n|n=0,N ,
to be non-zero. There are, perhaps surprisingly, only few examples in the literature where
Rouse modes have been derived for boundary conditions other than free ends. They include
the analysis for ends fixed at the same point (a loop with rn = r0 = 0) [22], for one
end fixed and one free (a tethered chain) [23, 24], and for a block copolymer system
with free ends, but chain connectivity at the interblock junction [25]. Here, we need to
find the independent normal modes, {xp(t)}, of the constrained Rouse chain, such that the
boundary conditions (2) are satisfied. We therefore consider a linear transformation of {rn(t)}:
xp = ∫ N

0 dn rn(t)φpn. Moreover, we want the equation of motion (1) to transform to one
that represents the Brownian motion of decoupled oscillators. The general solution of the
type φpn = c1 cos bpn + c2 sin bpn—such that φpn stays a periodic function—cannot satisfy
the fixed-position boundary conditions, whilst having non-zero forces at the ends. The key
to finding the constrained Rouse modes is to factor out the R dependence, such that the
position vectors of the Rouse segments can be written as follows: rn(t) = g(n,R) + ρn(t),
such that ρn(t) describes a loop with ends fixed at the same point, ρ0 = ρN = 0. Finally,
in order to satisfy (2), we impose the following constraint on the time-independent part of
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rn: g(0,R) = 0 and g(N,R) = R. The function g, which satisfies (2), is not unique, but
the simplest is linear in n, that is, g(n,R) = n(R/N). We thus have the following modified
Rouse mode expansion for spatially constrained chain ends:

rn(t) = n

(
R

N

)
+ 2

N∑
p=1

xp(t) sin
[pπn

N

]
︸ ︷︷ ︸

≡ ρn(t)

, (3a)

and

xp(t) ≡ 1

N

∫ N

0
dnρn(t) sin

[pπn

N

]
, (3b)

and the normal modes xp transform the Langevin equation (1) to a set of decoupled Rouse
equations:

ζR
dxp

dt
= −kpxp + f̂p, where ζR = 2Nζ, (4)

and the associated stochastic force has the following statistical properties: 〈f̂ pα(t)f̂ qβ(t ′)〉 =
2ζRkBT δpqδαβδ(t − t ′) and 〈f̂ pα(t)〉 = 0. As usual, this is a diffusion problem for an effective
‘particle’ in a harmonic potential with a constant

kp = 2πκp2

N
= 6π2kBT

N�2
p2. (5)

The forces at the end points are proportional to ṙn = R/N + 2
∑

p(−1)pxppπ/N .
The microscopic stress tensor σαβ of a viscoelastic material consists of the stress

contribution due to the polymers, the solvent molecules and an isotropic pressure term
∼kBT δαβ . The last two contributions are not important for an incompressible elastomer
and are thus neglected from here onwards [7]. In the Rouse model the polymeric contribution
to the stress is given by the following tangent correlation function, in the continuous limit,

σ
(p)

αβ = c

N
κ

∫ N

0
dn

〈
∂rnα

∂n

∂rnβ

∂n

〉
ψ

, (6)

where c is the monomer density, N is the number of segments of a given polymer chain, so that
c̃ ≡ c/N is the number of chains per unit volume in the system proportional to the crosslink
density. The average 〈· · ·〉ψ denotes the time average of the components of stochastic force
f̂p(t) over the distribution

ψ[f̂ pα(t)] ∝ exp

(
− 1

4ζRkBT

∫
dt f̂ pα(t)2

)
. (7)

The microscopic stress tensor of a single constrained polymer chain is found by substituting
(3a) into the stress expression (6):

σ
(p)

αβ = c

N
k

∫ N

0
dn

( 〈RαRβ〉
N2

+

〈
Rα

N

∂ρnβ

∂n

〉
+

〈
∂ρnα

∂n

Rβ

N

〉
+

〈
∂ρnα

∂n

∂ρnβ

∂n

〉)
. (8)

The second and third terms above are zero, since
∫ N

0 dn(∂ρnα)/(∂n) = 0. In terms of normal
modes, the stress tensor of a single chain is thus given by

σ
(p)

αβ = ck

N2
〈RαRβ〉 +

c

N

∑
p

kp〈xpα(t)xpβ(t)〉ψ. (9)
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2.2. Stress tensor for a phantom network

Now consider a random network of constrained, end-linked chains, deformed by a strain tensor
E. For a phantom network model the end-to-end vectors of each network strand transform
affinely, R = E · R0, and the stress tensor in (9) is quenched averaged over the isotropic
Gaussian distribution:

σnetw,αβ = [σ (p)

αβ

]
P(R0)

(10a)

= ck

N2
[(E · R0)α(E ·R0)β]P(R0) +

c

N

∑
p

kp〈xpα(t)xpβ(t)〉ψ (10b)

= c

N
kBT (EE�)αβ +

c

N

∑
p

kp〈xpα(t)xpβ(t)〉ψ. (10c)

The notation [· · ·]P refers to the quenched average over the most convenient and appropriate
probability distribution P(R0) of the end-to-end vectors, given by

P(R0) =
(

3

2πN�2

) 3
2

exp

(
− 3R2

0

2N�2

)
. (11)

In order to investigate the entire time spectrum of the dynamic-mechanical response, we
need to use the full solution of the Langevin equation (4):

xpα(t) = xpα(0) e−t/τp +
1

ζR

∫ t

0
e−(t−t ′)/τp f̂ pα(t ′) dt ′, (12)

describing the normal modes and depending explicitly on the initial condition. From the
Langevin equation (4), one finds the time-correlation functions of the normal modes. In
equilibrium, they are given by

〈xpα(t)xqβ(0)〉ψ[f ] = δpqδαβ

kBT

kp

e−t/τp , (13)

where τp = ζR/kp ≡ τR/p2 is the relaxation time of the pth Rouse mode. The classical Rouse
time for a chain of N segments represents the relaxation time of the longest (p = 1) mode;
τR = ζN2�2/(3π2kBT ) [7]. In (10b) we imposed the constraint that only the topologically
quenched crosslinks are affected by the deformation, thereby applying the affine deformation
approximation only to the span vectors R. Here, at an arbitrarily short time after an
instantaneous strain, we assume that the positions of all the segments between two crosslinks
are changed on instantaneous deformation, in the same proportion as the macroscopic strain
dictates. We choose an appropriate initial condition xpα(0), by distinguishing between the
state of each segment just before the strain E is imposed on the material, at t = 0−, and just
after E is applied, t = 0+. Thus, applying a step strain E at time t = 0, a given segment
position before deformation rn(0−) will change to rn(0+) after deformation:

rn(0
+) = E · rn(0

−) −→ xp(0+) = E · xp(0−). (14)

Applying the affine deformation to all normal modes, the full solution of the Langevin equation,
given by (12), becomes

xpα(t) = Eαµxpµ(0−) e−t/τp +
1

ζR

∫ t

0
e−(t−t ′)/τp f̂ pα(t ′) dt ′. (15)
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After substituting this xpα(t) the correlation function in (10) can thus be written as follows, to
illustrate the E-dependence:

〈xpα(t)xpβ(t)〉ψ =
〈
EαµEβη

δµη
kBT

kp︷ ︸︸ ︷
xpµ(0−)xpη(0

−) e−2t/τp

〉
ψ

+ Eαµxpµ(0−) e−t/τp
1

ζR

∫ t

0
dt ′ e−(t−t ′)/τp 〈fpβ(t ′)〉ψ

+ Eβηxpη(0
−) e−t/τp

1

ζR

∫ t

0
dt ′ e−(t−t ′)/τp 〈fpα(t ′)〉ψ

+
1

ζ 2
R

∫ t

0
dx

∫ t

0
dy e−(2t−x−y)/τp 〈fpα(x)fpβ(y)〉ψ, (16)

where 〈· · ·〉ψ denotes the time average over the functional distribution ψ[f̂p(t)], defined in (7).
The cross terms vanish since 〈fnα(t)〉ψ = 0, and 〈f̂ pα(t)f̂ qβ(t ′)〉 = 2ζRkBT δpqδαβδ(t − t ′),
leads to a constant last term. Completing all the integrations with respect to time, we obtain

〈xpα(t)xpβ(t)〉ψ = EαηEβη

kBT

kp

e−2t/τp +
kBT

kp

(1 + e−2t/τp )δαβ. (17)

Substituting this back into (10c), we obtain the complete network stress tensor,

σnetw,αβ = c

N
kBT

⎧⎨⎩(EE�)αβ

⎛⎝1 +
N∑

p=1

e−2t/τp

⎞⎠ +
N∑

p=1

(1 − e−2t/τp )δαβ

⎫⎬⎭ . (18)

Note that this stress tensor contains an isotropic (time-dependent) term which is a contribution
to an effective pressure, which is irrelevant unless we need to examine the small effects of
changing volume at constant pressure in an open network [26].

Let us first consider an isovolumetric uniaxial deformation, with the sample
instantaneously stretched in the z-direction by a factor λ, that is, Ezz = λ,Exx = Eyy =
λ−1/2, Eα 	=β = 0. In this geometry, the diagonal components σxx and σyy are equal. The
response is characterized by the stress difference, called the tensile stress:

σT = σzz − σxx = c

N
kBT

(
λ2 − 1

λ

)⎛⎝1 +
N∑

p=1

e−2t/τp

⎞⎠ , (19)

which directly follows from (18). Seminal literature mentions that it is important to examine
relative stress expressions only, cf [27]. Since additional pressure terms arise due to a small
change in the volume of the network during deformation, correct stress expressions could
also be obtained by means of volume relaxation calculations, cf [26, 28]. The resulting shear
modulus takes the form

G(t) = G0

⎛⎝1 +
N∑

p=1

e−2t/τp

⎞⎠ , with G0 = c̃kBT , (20)

where c̃ = c/N is proportional to the crosslinking density. At small extensions, λ → 1 + ε,
we trivially verify that the Young modulus Y (t) ≡ σ/ε = 3G(t). In the equilibrium limit
(t → ∞) the relaxation of all Rouse modes is complete, and the material returns to the rubber
elastic behaviour of a classical phantom network, G(t) → G0. In the short time limit (t → 0),
G → NG0, akin to the ‘glassy’ plateau. In this limit, no long-range relaxations can take place
and the effective spring constants between neighbouring segments are thus probed, which give
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the modulus N times higher. Between these two limits, as the time of relaxation increases,
more and more Rouse modes become relevant channels for stress relaxation. The formulation
provides a smooth crossover in accounting for the dynamical behaviour spanning all timescales.
It is customary to consider the dynamic shear modulus, G∗(ω) = iω

∫∞
−∞ dt e−iωtG(t), when

investigating stress relaxation. In [19] the key properties of G∗(ω) are summarized and the
results of the calculation are compared with both the classical phantom network approach
in equilibrium [15] and the dynamic elongation experiments. Although a simple phantom
model, it captures the qualitative features of stress relaxation in networks [29] and some of the
quantitative aspects, such as the exponents seen in the dynamic modulus.

3. Constrained Rouse-tube network model

So far we have applied the classic Rouse model to a phantom network: hydrodynamic
interactions and topological effects were ignored, with the environment only producing friction
without affecting the chain conformations. A necessary improvement would be to include
trapped entanglements and excluded volume effects into the stress–tensor approach.

3.1. Reptation theory of rubbery networks

There are many free energy models that investigate rubber elasticity and also include
topological constraints, but most are not suited for dynamics calculations. However, the
techniques developed to describe the tube model [20, 21], inspired by the original ideas of
Edwards [30], are transferable to dynamics. It effectively assumes that each network strand
is limited in its lateral fluctuations by the presence of neighbouring chains. Therefore, each
segment of a polymer only explores configurations in a limited, tube-like volume, which is
much smaller than the space occupied by a phantom chain. One can imagine the whole
strand fluctuating around a certain mean trajectory, which is called the primitive path in the
classic reptation theory [30]. The primitive path can be considered as a random walk with
an associated typical step length, which is much bigger than the polymer step length, as
shown in figure 1. The number of tube segments M is determined by the average number of
entanglements per chain, such that an unentangled chain corresponds to M = 1. Note that
all the chains are in constant thermal motion, altering the local constraints they impose on
each other. Hence, the fixed tube is a gross simplification of the real situation. However, one
expects this to be an even better approximation in rubber than in a corresponding melt (where
the success of the reptation theory is undeniable), because the restriction on chain reptation
diffusion in a crosslinked network prohibits constraint release [21, 31].

Along one network strand consisting of N segments of effective step length �, there are
M tube segments, each containing sm,m = 1, . . . ,M , monomer steps. Since the strand is
permanently crosslinked, the number of segments is conserved:

M∑
m=1

sm = N. (21)

There are effectively two random walks, with both having the same end-to-end vector R0,
between the connected crosslinking points. The first is the topologically fixed primitive path,
shown as solid black vector lines in figure 1; the second is the polymer chain restricted to
move around it, depicted as a dashed bead-spring chain. The number M of tube segments
(also called the nodes of the primitive path) is a free parameter of the theory, dependent on
the length of each polymer strand and the entanglement density. Each tube segment m can be
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∆m

∆m+1∆m-1

Figure 1. A polymer strand is surrounded by neighbouring chains, which effectively confine the
strand to a tube. The tube segment m, with the span vector �m along its axis, contains sm monomer
steps, where m runs from 1 to M.

described by the span vector ∆m, joining the equilibrium positions of the strand monomers at
the two ends of each tube segment.

Since the primitive path is a topologically frozen characteristic of each network strand,
we shall assume that all span vectors ∆m deform affinely with the macroscopic strain:
∆′

m = E ·∆m. This is the central point in the model: the rubber elastic response arises
due to the change in the number of polymer configurations in a distorted primitive path. Next,
the number of conformations is evaluated by separately looking at chain excursions parallel
and perpendicular to the tube axis, along each span ∆m. The earlier work [20, 26] gives the
details of this evaluation, which gives the product of the statistical weights of parallel and
perpendicular excursions of a polymer segment consisting of sm monomers in a tube segment
of span ∆m:

Wm = W ‖
mW⊥

m ∝ 1√
sm

exp

(
− 3

2�2sm

∆2
m − 1

3
q0�sm

)
, (22)

where q0 is a parameter determining the strength of the confining potential and thus related
to the tube diameter, cf [3, 12, 26]. Therefore, the full number of configurations of the whole
strand is given by

W =
∫ N

0
ds1 · · ·

∫ N

0
dsM

(
M∏

m=1

Wm

)
δ

(
M∑

m=1

sm − N

)
, (23)

where the constraint (21) on the polymer contour length between two crosslinks is implemented
by the delta-function. The statistical summation in (23) takes into account the reptation motion
of the polymer between its two crosslinked ends, changing the number of segments constrained
within each tube segment and finally equilibrating for a given conformation of the primitive
path.

By rewriting the delta-function as δ(x) = 1
2π

∫
dk eikx , one can find the saddle points

s∗
m which make the exponent of the statistical sum (23) stationary. The integrals over sm

and the auxiliary variable k are both approximated by means of the steepest descent method.
Consequently, the equilibrium number of polymer segments confined within a tube segment
with the span vector ∆m is given by

sm = N�m∑M
m=1 �m

, (24)
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r 0

r N

r n

y m

y m−1

r m+1

m+1

m

(s; t)

r m

∆

∆

Figure 2. A polymer strand between crosslinks (
⊗

), confined by M tube segments (only the tube
of segment m is explicitly shown here). A tube segment m, with the span vector �m = ym −ym−1
along its axis, contains sm monomer steps. The nth monomer has position vector rn. The end-
to-end vector of the polymer strand is R = rN − r0. In the tube model, we denote the position
vector of a monomer segment by rm(s, t), cf (28).

where �m = |∆m| is the length of the mth step of the primitive path. After integrating out the
freedom in the distribution of {sm} in this way, the total number W of configurations of one
strand, confined within a tube whose primitive path is described by the set of vectors {∆m}, is
proportional to the probability distribution:

W(∆1, . . . ,∆M) ∝ P({∆m}) ∝ e− 1
3 q0�N(∑M

m=1 �m

)M−1 exp

⎡⎣− 3

2�2N

(
M∑

m=1

�m

)2
⎤⎦ . (25)

The probability distribution P({∆m}) is reminiscent of a normal Gaussian, but is in fact
significantly different since both the exponent and the denominator contain the modulus of the
tube segment vector ∆m. From here onwards we shall no longer write a bar over the preferred
sm in (24), since all expressions will use it as a parameter, not a variable.

3.2. Rouse model with tube constraints

In section 2 we reviewed the basic Rouse dynamics for an end-constrained chain and a
corresponding stress tensor for an ideal, phantom network. Following the ideas in section
3.1, we imagine each polymer strand to be confined within M tube-like regions. The axis or
primitive path of a tube represents all the conformations that are accessible to a chain section
between two entanglement constraints. In figure 2, we define the current model variables. Let
nm be the polymer segment at the ‘exit’ of tube segment m, so that nM = N , for a chain with
N polymer segments between two crosslinks and confined to M tube segments. If sm is the
number of monomer steps within a tube segment m, then sm = nm − nm−1. The monomer
segments have position vectors rn(t) and the tube segments have position vectors ym:

ym(t) ≡ r|n=nm
= 2

N∑
p=1

xp(t) sin
[pπnm

N

]
; (26)

recall that the span vector of the mth tube segment is defined as ∆m = ym − ym−1.
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For this Rouse model of tube-constrained chains the stress tensor of a tube segment m, in
the continuous limit, is given by

σ
(m)
αβ (t) = c

N
k

∫ sm

0
ds

〈
∂rmα(s, t)

∂s

∂rmβ(s, t)

∂s

〉
ψ

, (27)

where c again is the monomer density. This follows from (6), which gives the stress tensor of a
single network strand between two crosslink points. As before, the notation 〈· · ·〉ψ denotes the
time average of the components of stochastic force f̂p(t) over the distribution (7). Analogous
to (3a), the position vector of a monomer (or bead) at the contour length s within the tube
segment m, denoted by rm(s, t), is written in terms of the span vector:

rm(s, t) = ym−1 +
s

sm

∆m + ρm(t), with ρm(t) = 2
sm∑

p=1

xp(t) sin

[
pπs

sm

]
. (28)

Note that the ‘loop’ position vector ρm(t) has a shorter period now, so that rm(sm, t) −
rm(0, t) = ∆m. In the phantom model of section 2.1, the equivalent boundary condition
is given by rN(t) − r0(t) = R. By summing σ

(m)
αβ over M tube segments, one defines the

microscopic stress tensor for a single chain between crosslinks:

σ
(ch)
αβ (t) = c

N
κ

M∑
m=1

∫ sm

0
ds

〈
∂rmα(s, t)

∂s

∂rmβ(s, t)

∂s

〉
ψ

, (29)

which, by using (28), can be written in terms of normal coordinates and the span vectors, as
follows:

σ
(ch)
αβ (t) = c

N
κ

M∑
m=1

[∫ sm

0
ds

〈(
�mα

sm

+
∂ρmα

∂s

)(
�mβ

sm

+
∂ρmβ

∂s

)〉
ψ

]
(30a)

= c

N
κ

M∑
m=1

⎡⎣ 1

sm

�mα�mβ +
sm∑

p=1

2π2p2

sm

〈xpα(t)xpβ(t)〉ψ
⎤⎦ (30b)

(the last line follows after integrating with respect to s). The first term is independent of s and
of random noise. The last term survived the s-integration and still has to be averaged with
respect to the thermal noise. Following the method outlined in section 2.2, the full solution of
the Langevin equation is

xpα(t) = Eαµxpµ(0−) e−t/τ̃p +
1

ζR

∫ t

0
e−(t−t ′)/τ̃p f̂ pα(t ′) dt ′, (31)

where the mode times are as before, τ̃p = τ̃S/p
2, but with a shorter ‘Rouse time’ given by

τ̃S ∝ s2
m

/
kBT . Again, this is a diffusion problem for an effective ‘particle’ in a harmonic

potential, but with a different constant

k̃p = 2πκp2

sm

= 6π2kBT

sm�2
p2 and τ̃p = ζ s2

m

π2κp2
. (32)

Keeping in mind the change in the Rouse time and normal mode diffusion constant, the
correlation function in (30b) is again given by (17), which now becomes

〈xpα(t)xpβ(t)〉ψ |t→∞ = kBT

k̃p

δαβ = sm�2

6π2p2
δαβ. (33)

The stress tensor of the whole network can be expressed as the ensemble average of σ
(ch)
αβ

over the quenched probability to find a given tube-confined strand with tube vectors described
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Figure 3. Illustrating the kinetic equation (35) for sm.

by the set {∆m}. This probability is proportional to the total number of configurations of
the whole crosslinked strand, given by P({∆m}) in (25). In the melt before crosslinking, the
ensemble of chains obeys the distribution (25). The process of crosslinking not only quenches
the end points of each strand, but also quenches the nodes of the primitive path ∆m, since we
assume the crosslinked chains cannot release the constraints by reptation. In our mean-field
approach, the tube segments described by ∆m are conserved, although deformed by the strains
applied to the network.

In this work we apply the affine deformation assumption with respect to the end-to-end
vectors, denoted by R0. Since

∑M
m=1 ∆m = R0, it follows that the span vectors deform

affinely as well, that is, ∆′
m = E ·∆m. Furthermore, any affine deformation E transforms

the span vector lengths �m = |∆m| into �
′
m = |E ·∆m|, but leaves the quenched distribution

P({∆m}) unchanged. Bearing this in mind, we can present the dynamic stress tensor of the
crosslinked network in its most compact form:

σαβ(t) = c

N
κ

M∑
m=1

[[
[E ·∆m]α[E ·∆m]β

sm(t)
+

sm(t)∑
p=1

2π2p2

sm(t)
〈xpα(t)xpβ(t)〉

]]
P({∆m})

≡ σA
αβ + σB

αβ. (34)

The brackets [[· · ·]]P refer to the quenched average with respect to the distribution P{∆m}
proportional to the statistical weight given in (25).

The next step is to decide on the functional form of sm(t), as the number of segments
in each tube is expected to change with time after the deformation is applied. As the mth
tube vector ∆m transforms to ∆′

m, so does the number of polymer segments confined within
this tube transform from sm(t = 0) given by (24) to the final equilibrium value sm(t → ∞)

determined by the new ∆′
m. It is physically plausible to use a growth function of the form, cf

figure 3,

sm(t) = sm(∞)(1 − e−γ t ) + sm(0) e−γ t , (35)

where the boundary values are given by

sm(0) = N |∆m|∑M
m′=1|∆m′ | and sm(∞) = N |E ·∆m|∑M

m′=1|E ·∆m′ | . (36)
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3.3. Equilibrium limit

First, we calculate the equilibrium solution by taking the t → ∞ limit in (34). Using the
equilibrium limit of (35), we evaluate the two terms in the stress expression separately. The
first part depends on the deformed span vectors as follows:

σA
αβ(t → ∞) = c

N
κ

[[
M∑

m=1

∑M
m′=1 |E ·∆m′ |
N |E ·∆m| [E ·∆m]α[E ·∆m]β

]]
P({∆m})

. (37)

The second part follows from (33) and is given by

σB
αβ(t → ∞) = c

N
κ

⎡⎣⎡⎣ M∑
m=1

sm∑
p=1

2π2p2

sm

kBT

k̃p

δαβ

⎤⎦⎤⎦ = c

N
kBT

⎡⎣⎡⎣ M∑
m=1

sm∑
p=1

δαβ

⎤⎦⎤⎦
P({∆m})

. (38)

Since sm(∞) is given by (36), one has to substitute the �m-dependent value into the sum prior
to averaging with respect to P({�m}). Nevertheless, this term again gives the trivial result
contributing only to the effective pressure:

σB
αβ(t → ∞) = c

N
kBT

[[
M∑

m=1

N |E ·∆m|∑M
m′=1|E ·∆m′ |δαβ

]]
P({∆m})

= c

N
kBT Nδαβ. (39)

We proceed to solve the main stress contribution in equilibrium, given by (37). Let us write
span vectors as ∆m = �mem, with em being unit vectors of their orientation. The sums within
the [[· · ·]] brackets can be factored as follows:

M∑
m=1

�2
m (E ·em)α (E · em)β +

M∑
m,m′=1
m	=m′

�m�m′ |E ·em′ | (E · em)α (E ·em)β

|E · em| . (40)

When averaging, the first part leads to M terms and the second to M(M − 1) terms; the stress
becomes

σA
αβ(t → ∞) = c

N
κM
[[
�2

m(E ·em)α(E ·em)β
]]

+
c

N
κM(M − 1)

[[
�m�m′

|E · em′ |(E ·em)α(E ·em)β

|E · em|
]]

. (41)

The procedure of evaluating the quenched averages of the form [[�m�m′]] with the probability
distribution P({∆m}) given by (25) is given in the appendix. After completing the integration
over the absolute values |∆m| and simplifying all the front factors, including the normalization,
the resulting stress expression takes the form

σA
αβ(∞) = 4

c

N
kBT

2M + 1

3M + 1

{
(4π)−1

∫
d�m(E · em)α(E · em)β

+ (M − 1)(4π)−2
∫

d�m

(E · em)α(E · em)β

|E · em|
∫

d�m′ |E · em′ |
}

. (42)

Recall that c̃ = c/N is the average crosslink density of the system. The last step is to perform
the remaining angular integrations over orientations em. This depends on the particular
geometry of deformation E.

Let us first consider a small shear deformation given by

E =
⎛⎝1 ε 0

0 1 0
0 0 1

⎞⎠ ⇒
(E · em)x = sin θm(cos φm + ε sin φm)

(E · em)y = sin θm sin φm

(E · em)z = cos θm,

(43)
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where the notation used so far was rewritten in terms of spherical coordinates for the specific
case of a shear deformation. We again refer the reader to the appendix for detailed calculations.
From (A.11) and (A.12), the stress tensor (42) becomes

σxy(t → ∞) = 4

3
c̃kBT

2M + 1

3M + 1

[
1 +

4

5
(M − 1)

]
ε. (44)

The approximately linear dependence of shear modulus on the entanglement number, in the
limit M � 1, agrees with other approaches to equilibrium elasticity of entangled rubbers
[17, 32, 33]. In the phantom limit (i.e. taking M → 1) the equilibrium shear modulus returns
to G0 = σxy/ε = c̃kBT , as expected. In the strongly entangled limit, at M � 1, the shear
modulus increases to G ≈ (32/45)Mc̃kBT .

Next, consider an arbitrary large uniaxial volume-preserving strain given by

E =
⎛⎝1/

√
λ 0 0

0 1/
√

λ 0
0 0 λ

⎞⎠ ⇒
(E ·em)x = λ−1/2 sin θm cos φm

(E ·em)y = λ−1/2 sin θm sin φm

(E ·em)z = λ cos θm,

(45)

where we again change to spherical coordinates to simplify integration. Substituting the
results of the integrals (A.13) back into the stress tensor (42), we obtain the relevant stress
components and therefore the tensile stress:

σT(t → ∞) ≡ σzz − σxx

= c̃kBT
2M + 1

3M + 1

{
4

3

(
λ2 − 1

λ

)
+ (M − 1)

[
(4λ3 − 1) arcsin2

√
1 − λ3

2λ(1 − λ3)2

−
√

λ arcsin
√

1 − λ3

√
1 − λ3

− λ2(1 + 2λ3)

2(1 − λ3)

]}
. (46)

By taking λ → 1 + ε, with ε � 1, one obtains the expression for the Young modulus from the
linear tensile stress:

σT(t → ∞)|λ→1+ε = c̃kBT
4(2M + 1)(4M + 1)

5(3M + 1)
ε + O[ε2]. (47)

It satisfying to note that the Young modulus Y = σT/ε is exactly three times the equilibrium
shear modulus from (44), in spite of quite different and complicated integration route leading
to each of the expressions.

3.4. Different dynamic regimes

In general, during the course of stress relaxation all the expressions depend on the kinetic
function for the tube segment number sm(t), for which we have assumed the form (35), shown
in figure 3. This makes P({∆m}) much more complicated, and we therefore only investigate
certain cases here.

Case 1. Behaviour at t → 0. For short time scales we expect the behaviour at the level of
individual chain segments to be the same as for the phantom model of section 2.2, since the
segments will not experience the effect of the tube constraints yet. Taking t = 0 and sm(t) as
sm(0), the stress tensor (34) becomes

σαβ |t=0 = c̃
κ

N

M∑
m,m′=1

[[�m�m′[E ·em]α[E · em]β]]P({∆m}) + c̃kBT N(EE�)αβ. (48)
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The term in [[· · ·]]P brackets is averaged in the same way as before. For a uniaxial deformation,
the tensile stress is given by

σT = σzz − σxx |t=0 = c̃kBT

(
λ2 − 1

λ

)[
1

3
(2M + 1) + N

]
, (49)

and the resulting shear modulus at t → 0 is

G = c̃kBT

[
1

3
(2M + 1) + N

]
. (50)

In the limit of no entanglements (M = 1), one obtains the phantom result, G = NG0, as
expected.

Case 2. sm equilibrates slowly. This is the situation when most of the time dependence is due
to slow sm-relaxations, that is, limited by the rate of redistribution of chain segments between
the steps of primitive path after deformation. This is the limit when γ � 1/τp for all p, and
so we can take e−t/τp → 0 in the Rouse sums. The stress tensor (34) becomes

σαβ = c̃κ

M∑
m=1

[[
[E ·∆m]α[E ·∆m]β

sm(∞) − [sm(∞) − sm(0)] exp(−γ t)

]]
P({∆m})

+ c̃kBT Nδαβ. (51)

This results in a difficult tube-span vector average, and we are forced to make a simplifying
assumption that

∑
n(|E · en| − |E · em|)�n ≈ (1 − E ·em|)∑n �n, such that we obtain a

more tractable expression to average. We have

σαβ ≈ c̃
κ

N

M∑
m=1

[[
�m[E · em]α[E ·em]β

∑
n �n|E · en|

(1 − |E · em|) exp(−γ t) + |E ·em|

]]
P({∆m})

+ c̃kBT Nδαβ, (52)

where the effective pressure correction in the last term will be dropped from now on Following
the same method for averaging the tube vector spans |∆m|, we end up with the following
deformation-dependent expression:

σαβ = 4c̃kBT
2M + 1

3M + 1

{
(4π)−1

∫
d�m

(E ·em)α(E ·em)β

1 + (|E · em|−1 − 1) e−γ t

+
(M − 1)

(4π)2

∫
d�m

(E ·em)α(E ·em)β

|E · em|{1 + (|E · em|−1 − 1) e−γ t }
∫

d�m′ |E · em′ |
}

.

(53)

In the case of small shear deformation, as in section 3.3, the shear modulus near the equilibrium
takes the form

G(t) = 4

15
c̃kBT

2M + 1

3M + 1
(1 + 4M + M e−γ t ), (54)

which now includes a new relaxation time 1/γ (recall γ τp � 1 in this regime), and gives the
correct result in the M = 1 limit of a phantom network in equilibrium.

Case 3. sm equilibrates fast. This is the opposite case, corresponding to the situation when
the reptation of chain segments between different tubes of the primitive path is fast and the
value sm(∞) is reached before the majority of the Rouse modes had time to dissipate. In
other words, this is the limit of γ τp � 1 for all or most p. The result may be expected to be
trivial: a combination of the new equilibrium plateau result given by (47) and the old Rouse
behaviour interpolating between G(t = 0) ≈ Nc̃kBT and G(t) ∼ t−1/2. Indeed, the first part
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of the stress tensor is identical to the equilibrium case, cf σA in (34) and (37). However, the
second part, denoted by σB in (34), is more difficult to treat. To simplify the calculations,
the shear modulus G(t) can be inspected for different time regimes, written in terms of the
defined Rouse times:

G(t) ≈ Geq +

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

G0
∑M

m=1[[e−2t/τ̃S ]]P({∆m}) t � ζ s2
m

π2κ
≡ τ̃S

1
2G0N

√
ζ

2πκ
t−1/2 t ∼ τ̃S

G0
∑M

m=1

[[∑sm

p=1 e−2tp2/τ̃S
]]

P({∆m}) τ̃S > t > τ̃p

G0(N + M e−2π2κt/ζ ) t � ζ

π2κ
= τ̃S/s

2
m.

(55)

Only half of the above cases have closed-form solutions. The remaining cases, indicated
by the presence of [[· · ·]] brackets, will need more severe assumptions or a direct numerical
approach.

Case 4. Mean-field average for sm. We can obtain a very crude estimate of the dynamic stress
tensor by making an assumption that the number of chain segments in each tube equilibrates
first (as in case 3), and also that there is on average the same number of segments in each
tube: s̄∗

m = N/M . Such an assumption can only realistically be defended if M � 1 and
all tube sections are relatively short, with narrow distribution. However, we can make an
easy analytical progress, since the main difficulty of this problem (in determining s̄m(t, λ)) is
removed. In this case, the longest Rouse mode τ̃ ∗

S = ζN2/(π2κM2) = τR/M2 and the stress
tensor (34) simplifies greatly:

σαβ(t) = c̃κ
M

N

M∑
m=1

[[
�2

m[E · em]α[E ·em]β
]]

P({∆m})

+ c̃kBT

M∑
m=1

N/M∑
p=1

[(EE�)αβ e−2tp2/τ̃S + (1 − e−2tp2/τ̃ ∗
S )δαβ]. (56)

After the integration with respect to P, the tensile stress takes the form

σT = c̃kBT M

⎧⎨⎩4

3

(2M + 1)

(3M + 1)
+

N/M∑
p=1

exp

(−2tp2

τ̃ ∗
S

)⎫⎬⎭
(

λ2 − 1

λ

)
. (57)

This expression gives consistent results for the shear modulus in both the equilibrium and
t = 0 limits, and shows the characteristic t−1/2 transition between these regimes.

4. Summary

We have presented an improved stress-based model of polymer network dynamics, which
combines both the traditional rubber network elasticity and the Rouse approach to dynamics
and relaxation. In this model, we have assumed the crosslinks to be spatially fixed and to
deform affinely. This is clearly a weakness, characteristic of many rubber-elasticity treatments.
Experiments have shown that network deformations at a microscopic length scale are not
always affine [34, 35], and there are several theories that begin to address this complication in
equilibrium [36]. However, in our dynamical treatment we are not able to raise the traditional
affine approximation. In the same way, complications due to finite extensibility of chains at
large deformations and network defects (loops and dangling ends) are not taken into account,
while we develop a dynamical formalism.
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Figure 4. Plotting the equation (57): G(t)/G0 against t/τR (the original Rouse time), for different
vales of M. The slope of the power-law decay is −0.5, in agreement with the underlying Rouse
ideas and the corresponding limit in (55). The nominal glass transition occurs at t � τR/N2, with
G given by (50). At t � τ ∗

S the equilibrium modulus approaches the value given by (44).

In section 2 we review an improved stress–tensor model, where both force and position
boundary conditions at the crosslinked endpoints of the flexible phantom chains were
rigorously enforced. Previously [18], only the position boundary conditions were observed,
resulting in an effective ‘tethered-chain network’. The results in section 2.2 provide a smooth
crossover in accounting for the dynamical behaviour spanning all timescales. The aim of
this paper was to describe entangled systems, which show qualitatively different dynamic-
mechanical responses from the earlier phantom model. In section 3, we used the mean-field
tube approach and obtained a general expression for the dynamic stress tensor. From this
tensor, we obtain the equilibrium response for a tube-confined network. It is somewhat
different from other expressions accounting for equilibrium elasticity of entangled rubbers,
but has the same qualitative features. Lastly, we investigated the general dynamic stress tensor
in four different limiting cases: at t → 0 (‘glassy’ response immediately after applying step
strain), the case of slow sm-equilibration, fast tube-equilibration and an approximation when
sm equilibrates at a single mean value for each tube segment. To improve this theory further,
we need either a different kinetic equation for sm(t) evolution or a numerical approach for the
cases where a closed-form solution is not attainable.

In this paper we only work with a dry polymer system (with no solvent effects), aiming
at understanding the basic principles of combined network and tube constraints. However,
an extension to swollen gels is possible and should be quite straightforward—for example,
the key parameter M has been estimated as M ∝ φ−4/3, with φ the polymer volume fraction
[37, 38]. The strength of our formulation is in its generalization of the Doi–Edwards tube
formulation for entangled networks where it offers the possibility of an analytic expression
for G(t).
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Appendix

In order to evaluate the thermodynamic averages of the form [[�m�m′]] of section 3.3, one
needs to average �m�m′ = |∆m||∆m′ | with the probability distribution P({∆m}) given by
(25). This is done in three steps: calculate the normalization factor, calculate the averages
over the moduli {�m} and lastly over the orientation vectors {em}.

A.1. The normalization factor

The normalization factor N of the distribution is calculated by introducing a new scalar
variable u =∑M

m=1 �m to simplify the exponent of the distribution

N =
M∏

m=1

∫
d∆m

exp
[− 3

2�2N

(∑M
m=1 �m

)2](∑
�m

)M−1 (A.1)

=
M∏

m=1

∫
d∆m

∫ ∞

0
du δ

(
u −

M∑
m=1

�m

)
e− 3

2�2N
u2

u−(M−1) (A.2)

= (4π)M
∫ ∞

0
du exp

(
− 3

2�2N
u2

)
u−(M−1)IM(u), (A.3)

where IM is a function of u defined as follows:

IM =
∫ u

0
d�1�

2
1

∫ u−�1

0
d�2�

2
2 . . .

∫ u−···−�M−2

0
d�M−1�

2
M−1

(
u −

M−1∑
i=1

�i

)2

.

The distribution and the moduli �m are invariant under rotations of the vectors ∆m, so that
the angular integration is done trivially by introducing spherical coordinates. Moreover, we
implement the constraint u =∑�m, and note that the moduli �m cannot be negative. Since
the integrals only involve power functions the function IM(u) is itself a power of u, whose
order is determined by counting the dimensions:

IM(u) = 1

Xm

u3M−1. (A.4)

Using this definition of the integral function, one can find a recursive relation

IM+1(u) =
∫ u

0
d�1�

2
1IM(u − �1) = 2

3M(3M + 1)(3M + 2)

u3(M+1)−1

XM

, (A.5)

and applying (A.4) to this relation and using the initial condition, I1 = u2, one can obtain all
the coefficients XM recursively:

XM+1 = 1
2 3M(3M + 1)(3M + 2)XM, (A.6)

and thus all the functions Im(u) are known. Lastly, one performs a standard Gaussian
integration over u to obtain the normalization:

N = (4π)M
1

2

(
2�2N

3

)M+ 1
2

�

(
M +

1

2

)[M−1∏
i=1

3i

2
(3i + 1)(3i + 2)

]−1

. (A.7)
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A.2. Averaging the tube segment lengths {�m}
Having obtained the normalization constant N , we can proceed to calculate the averages in
(41). The calculations are similar to the above one for N , but with more involved angular
integrations, denoted by d�:

σA
αβ(∞) = c

N

κM

N

∫ ∞

0
du exp

(
− 3

2�2N
u2

)
u−(M−1)̃IM(u)

(
M∏

m̃=1

∫
|e|=1

d�m̃

)

×
{

(E · em)α (E ·em)β + (M − 1)
|E · em′ | (E ·em)α (E · em)β

|E · em|

}
. (A.8)

Again, we wrote each tube segment span vector as a product of its modulus, �m, and its
arbitrary orientation, denoted by the unit vector em. The integrations over the moduli now
include two more powers from �2

m and �m�m′ and counting the dimensions we obtain a
slightly different recursive function to the one given in (A.4):

ĨM(u) = 1

X̃m

u3M+1. (A.9)

Repeating the same procedure as in (A.5), we obtain a recursive formula for the coefficients

X̃M+1 = 1
2 (3M + 2)(3M + 3)(3M + 4)X̃M. (A.10)

After completing the moduli integrations (over �m and u) and simplifying all the front factors,
including the normalization factor, the stress expression only contains orientational integrals,
cf (42).

A.3. Averaging the orientation vectors {em}
The last step is to perform the remaining angular integrations. However, this is dependent on
the type of deformation. First we consider a small shear deformation. From (43), it follows
that∫

d�m

(E · em)x(E ·em)y

|E ·em|

=
∫ 2π

0
dφm

∫ π

0
dθm

sin3 θm(cos θm sin φm + ε sin2 φm)

[sin2 θm(1 + 2ε cos φm sin φm + ε2 sin2 φm) + cos2 θm]1/2

≈ 16π

15
ε for ε � 1. (A.11)

Similarly, for a small shear, the rest of the non-trivial angular integrations simplify:∫
d�m|E ·em| ≈ 4π for ε � 1,

(A.12)∫
d�m (E · em)x (E · em)y ≈ 4π

3
ε for ε � 1,

Next we consider a uniaxial deformation given by (47). This time we do not Taylor
expand at all, but calculate the integrals exactly. This is possible since the deformation is a
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diagonal matrix. The relevant integrals are listed below:∫
d�m

(E · em)x (E · em)x

|E ·em| =
∫ 2π

0
dφm

∫ π

0
dθm

1

λ

sin3 θm cos2 φm[
1
λ

sin2 θm + λ2 cos2 θm

]1/2

= 4π

⎧⎨⎩ 2λ3 − 1

λ
1
2 (λ3 − 1)3/2

sinh−1[
√

λ3 − 1] − λ

4(λ3 − 1)

⎫⎬⎭ ,

∫
d�m

(E ·em)z (E · em)z

|E · em| = 4π

{
λ4

2(λ3 − 1)
− λ5/2 sinh−1[

√
λ3 − 1]

2(λ3 − 1)3/2

}
,

∫
d�m|E ·em| = 4π

(
1

2
λ +

sinh−1[
√

λ3 − 1]

2λ1/2
√

λ3 − 1

)
,

∫
d�m(E · em)x(E · em)x = 4π

3

1

λ
,

∫
d�m(E · em)z(E · em)z = 4π

3
λ2. (A.13)
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